
Data Abstraction

Announcements

Manipulating Lists

The Most Important Operations on a List of Numbers

>>> s = [5, 7, 9, 11] # Make a list using a list literal
>>> s[0] # Get the first element using item selection
5
>>> s[1:] # Get the rest using slicing
[7, 9, 11]
>>> [3] + s # Make a longer list using addition
[3, 5, 7, 9, 11]

4

Discussion 4

Max Product

Write a function that takes in a list and returns the maximum product that can be formed
using non-consecutive elements of the list. All numbers in the input list are greater than
or equal to 1.

def max_product(s):
 """Return the maximum product that can be
 formed using non-consecutive elements of s.

 >>> max_product([10, 3, 1, 9, 2]) # 10 * 9
 90
 >>> max_product([5, 10, 5, 10, 5]) # 5 * 5 * 5
 125
 >>> max_product([])
 1
 """
 if len(s) == 0:
 return 1
 elif len(s) == 1:
 return s[0]
 else:
 return ____

6

Either include s[0] but not s[1], OR
Don't include s[0]

Choose the larger of:
multiplying s[0] by the max_product of s[2:] (skipping s[1]) OR

 just the max_product of s[1:] (skipping s[0])

max(s[0] * max_product(s[2:]), max_product(s[1:]))

A tip for finding a recursive process:
1.Pick an example: s = [5, 10, 5, 10, 5]
2.Write down what recursive calls will do:
- max_product([10, 5, 10, 5]) → 10 * 10
- max_product([5, 10, 5]) → 5 * 5
- max_product([10, 5]) → 10
- max_product([5]) → 5
3.Which one helps build the result?

Sum Fun

Implement sums(n, m), which takes a total n and maximum m. It returns a list of all lists:
• that sum to n,
• that contain only positive numbers up to m, and
• in which no two adjacent numbers are the same.

>>> sums(5, 3)
[[1, 3, 1], [2, 1, 2], [2, 3], [3, 2]]
>>> sums(5, 5)
[[1, 3, 1], [1, 4], [2, 1, 2], [2, 3], [3, 2], [4, 1], [5]]

def sums(n, m):
 if n < 0:
 return []
 if n == 0:
 sums_to_zero = [] # The only way to sum to zero using positives
 return [sums_to_zero] # Return a list of all the ways to sum to zero
 result = []
 for k in range(1, m + 1):
 result = result + [__________ for rest in __________ if rest == [] or __________]
 return result

7

[1, 3, 1] = [1] + [3, 1]
[2, 1, 2] = [2] + [1, 2]
[2, 3] = [2] + [3]
[3, 2] = [3] + [2]
[1, 1, 3] = [1] + [1, 3]
[1, 2, 2] = [1] + [2, 2]

[k]+rest sums(n-k,m) k != rest[0]

Min Practice

Example: Two Lists

Given these two related lists of the same length:

xs = range(-10, 11)
ys = [x*x - 2*x + 1 for x in xs]
Write an expression that evaluates to the x for which the corresponding y is smallest:

9

>>> list(xs)
[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> ys
[121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> x_corresponding_to_min_y
1

Slicing Practice

Spring 2023 Midterm 2 Question

11

range(len(s))sum(s[:k+1])

Tree Recursion with Strings

Parking

13

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement park, which returns a list of all the ways, represented as strings, that vehicles
can be parked in n adjacent parking spots for positive integer n. Spots can be empty.

def park(n):
 """Return the ways to park cars and motorcycles in n adjacent spots.
 >>> park(1)
 ['%', '.']
 >>> park(2)
 ['%%', '%.', '.%', '..', '<>']
 >>> len(park(4)) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """
 if n < 0:
 return _______
 elif n == 0:
 return _______
 else:
 return __

[]

['']

['%'+s for s in park(n-1)] + ['.'+s for s in park(n-1)] + ['<>'+s for s in park(n-2)]

park(3):
%%%
%%.
%.%
%..
%<>
.%%
.%.
..%
...
.<>
<>%
<>.

Dictionaries

{'Dem': 0}

Dictionary Comprehensions

15

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

• How data are represented (as some underlying list, dictionary, etc.)

• How data are manipulated (as whole values with named parts)

17

E.g., refer to the parts of a line (affine function) called f:

• slope(f) instead of f[0] or f['slope']

• y_intercept(f) instead of f[1] or f['y_intercept']

Why? Code becomes easier to read & revise; later you could represent a line f as two
points instead of a [slope, intercept] pair without changing code that uses lines.

