

Announcements

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

How data are represented (as some underlying list, dictionary, etc.)

How data are manipulated (as whole values with named parts)

E.g., refer to the parts of a line (affine function) called f:
-slope(f) instead of f[0] or f['slope'l
-y_intercept(f) instead of f[1] or f['y_intercept']

Why? Code becomes easier to read & revise; later you could represent a line f as a
Python function or as two points instead of a [slope, intercept] pair without
changing code that uses lines.

Trees

Tree Abstraction
Root of the whole tree or Root Node

Root label 4@. . - 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
v
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Using the Tree Abstraction

For a tree t, you can only:

*Get the label for the root of the tree: label(t)

*Get the list of branches for the tree: branches(t)

«Get the branch at index i, which is a tree: branches(t)[1i]
eDetermine whether the tree is a leaf: is_ leaf(t)

*Treat t as a value: return t, f(t), [t], s = t, etc.

(Demo)

Implementing the Tree Abstraction

def tree(label, branches=[]):

return [label] + branches

def label(tree):
return treel[0]

def branches(tree):
return tree[l:]

« A tree has a root label
and a list of branches

- Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(l),
tree(2, [tree(1),

. tree(1)])1)

[3, [11, (2, [1], [11]]

Implementing the Tree Abstraction

Verifies the

tree definition

« A tree has a root label
and a list of branches

|

def Creates a list
from a sequence

of branches

label(tree):
return treel[0]

def branches(tree):

return treel[1:] VS iaE8 iehe

tree is bound
to a list

def is _tree(tree):

return False
for branch in branches(tree):
if not is_tree(branch):
return False
return True

- Each branch is a tree

>>> tree(3, [tree(1l),

tree(2, [tree(1)
tree(1)

[11]]

1))
13, [11,

[2, [1],

def is_ leaf(tree):

return not branches(tree) (Demo)

Tree Processing

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):
return 1
else:
branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

Writing Recursive Functions

Make sure you can answer the following before you start writing code:
* What recursive calls will you make?

- What type of values do they return?

« What do the possible return values mean?

* How can you use those return values to complete your implementation?

Example: Largest Label

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def largest_label(t):
"""Return the largest label in tree t."""

if is_leaf(t):

else:
return Max ([_targest_label(b) for b in branches(t)] + L[tabel(t)]

Example: Largest Label

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def above_root(t):

"""Print all the labels of t that are larger than the root label."""

def process(u):
if label(u) > label(t)

for b in branches(Y):
process(b)

process(t)

