Mutability



Announcements



List Mutation

(Demo)

https://pythontutor. con/cp, ogram;

tmls 1%205,%207,%209, %201 i 1%2B1%29%5D6cunulat ive=true&curInstr=0&mode=display&origin=composingprograms. j s&py=3&rawInputLstISON=45B%5D



Building Lists Using Append

def sums(n, m):
"""Return lists that sum to n containing positive numbers up to m that
have no adjacent repeats, for n > 0 and m > 0.

>>> sums(5, 1)
[]
>>> sums(5, 2)
[[2; 1; 2]]
>>> sums(5, 3)
[r1, 3, 11, [2, 1, 21, [2, 31, [3, 2]]
>>> sums(5, 5)
(ra, 3, 11, I[1, 41, I[2, 1, 21, (2, 31, [3, 2], [4, 11, [5]]
>>> sums(6, 3)
(fry, 2, 1, 21, 11, 2, 31, I1, 3, 21, (2, 1, 2, 1], [2, 1, 31, [2, 3, 11, I3, 1, 21, [3, 2, 111
result = [] ,
for k in range(1, min(m + 1, n) ). # k is the first number of a list
for rest in sums(n-k, m)
if rest[0] !'= k:
result.append( [Kl + rest ) % pyild a list out of k and rest

if n <= m:
result.append([n])
return result

https://pythontutor. com/cp/compos ingprograms. html#code=result:




Building Lists of Branches



Example: Make Path

A list describes a path if it contains labels along a path from the root of a tree.
Implement make_path, which takes a tree t with unique labels and a list p that starts with
the root label of t. It returns the tree u with the fewest nodes that contains all the paths
in t as well as a (possibly new) path p.

t1 make_path(t1, [3,8,9,1]) make_path(tl, [3,4,8,9])

(3) &
0 806 & O
@O OO

make_path(t1, [3,5,6,8])

Recursive idea: make path(b, p[l:]) 1s a branch of the tree returned by make path(t, p)

Special case: if no branch starts with p[1], then a leaf labeled p[1l] needs to be added



Example: Make Path

A list describes a path if it contains labels along a path from the root of a tree.
Implement make_path, which takes a tree t with unique labels and a list p that starts with
the root label of t. It returns the tree u with the fewest nodes that contains all the paths

in t as well as a (possibly new) path p.
def make_path(t, p):

t1 make_path(t1,

[3,8,9,1])

Le) (7 LeJ 7J (o)

make_path(tl, [3,4,8,9])

"Return a tree like t also containing path p."
assert p[@] == label(t), 'Impossible’
if len(p) == 1:
return t
new_branches = []
found_pl = False
for b in branches(t):
if label(b) == pl[1]:
Y new_branches.append (_Make_path(b, pl1:]))
found_pl = True
else:
@ new_branches.append(b)
if not found_pl:
& new_branches.append (Mmake_path(tree(p[1]), pl1:1))
return tree(label(t), new_branches)




Mutation and Identity



Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g
>>> b
>>> g
True

>>> Q.
>>> g

[10, 20]

>>> Db

[10, 20]

>>> g
True

>>> g
>>> b
>>> g
True

>>> Db.

>>> a

[10]

>>> Db

= [10]
= [10]

append(20)

[10, 20]

>>> Qg
False



|ldentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)



Mutation and Names

If multiple names refer to the same mutable object (directly or indirectly), then a change
to that object is reflected in the value of all of these names.

What numbers are printed (and how many of them)?

S = [21 7; [11 8]]
t = s[2]
t.append([2])

e =5+t

t[2].append(8)
print(e)

unulative=truescurInstr=68mode=display&origin=composingprograms. js&py=3&rawInputLstISON=5B%5D

https://pythontutor. com/cp/composingprograms. html#code=s%20%3D%20%582, %207, %20%5B1,



