
CS 61A Environment Diagrams, Higher-Order Functions
Fall 2024 Discussion 2: September 11, 2024

If you do not have an in-person TA, you can reach your TA using this Zoom link.

If there are fewer than 3 people in your group, feel free to merge your group with another group in the room.

Now switch to Pensieve:

• Everyone: Go to pensieve.co, log in with your @berkeley.edu email, and enter your group number (which
was in the email that assigned you to this lab).

Once you’re on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).
If for some reason Penseive doesn’t work, return to this page and continue with the discussion.

Getting Started [5 minutes]
Say your name and a city (or place) that you like, which is not Berkeley and is not where you have lived. Feel free
to share why you like it.

VERY IMPORTANT: In this discussion, don’t press Check Answer or run any Python code until your whole
group is sure that the answer is right. Your goal should be to have all checks pass the first time! Figure things
out and check your work by thinking about what your code will do. Not sure? Talk to your group! (You won’t get
to run Python during the midterm, so get used to solving problems without it now.)

Q1: Warm Up

What is the value of result after executing result = (lambda x: 2 * (lambda x: 3)(4) * x)(5)? Talk about
it with your whole group and make sure you all agree before anybody checks the answer.

Call Expressions [15 minutes]
Draw an environment diagram for the code below. You can use paper or a tablet or the whiteboard. Talk to your
group about how you are going to draw it, then go through each step together. Then, step through the diagram
generated by Python Tutor to check your work.

See the web version of this resource for the environment diagram.

Here’s a blank diagram in case you’re using a tablet:

If you have questions, ask them instead of just looking up the answer! First ask your group, and then the staff (on
Zoom if your TA is remote).

https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1
https://tutor.pensieve.co/schools/berkeley/all/cs61a/cs61a_fa24/65b9e05d81508f3afeaad829/open
https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1

2 Environment Diagrams, Higher-Order Functions

template

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Environment Diagrams, Higher-Order Functions 3

Higher-Order Functions [60 minutes]
Remember the problem-solving approach from last discussion; it works just as well for implementing higher-order
functions.

1. Pick an example input and corresponding output. (This time it might be a function.)
2. Describe a process (in English) that computes the output from the input using simple steps.
3. Figure out what additional names you’ll need to carry out this process.
4. Implement the process in code using those additional names.
5. Determine whether the implementation really works on your original example.
6. Determine whether the implementation really works on other examples. (If not, you might need to revise step

2.)

Q2: Make Keeper

Implement make_keeper, which takes a positive integer n and returns a function f that takes as its argument another
one-argument function cond. When f is called on cond, it prints out the integers from 1 to n (including n) for which
cond returns a true value when called on each of those integers. Each integer is printed on a separate line.

def make_keeper(n):
"""Returns a function that takes one parameter cond and prints
out all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x): # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> make_keeper(5)(is_even)
2
4
>>> make_keeper(5)(lambda x: True)
1
2
3
4
5
>>> make_keeper(5)(lambda x: False) # Nothing is printed
"""
"*** YOUR CODE HERE ***"

No peeking! First try to implement it without the hint.

To return a function f, include def f(cond): as the first line of the implementation and return f as the last. The
f function should introduce i = 1 in order to loop through all integers, calling cond(i) to determine whether cond
returns true for each integer.

Don’t run Python to check your work. You can check it just by thinking!. If you get stuck, ask the staff
for help.

Once your group has converged on a solution, now it’s time to practice your ability to describe your own code. A
good description is like a good program: concise and accurate. Nominate someone to describe how your solution

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Environment Diagrams, Higher-Order Functions

works and have them present to the group for practice. Then, tell this description to your TA for feedback (on Zoom
if your TA is remote).

If no one is available right away, feel free to work on the next problem until a member of the course staff is available.

Q3: Digit Finder

Implement find_digit, which takes in a positive integer k and returns a function that takes in a positive integer x
and returns the kth digit from the right of x. If x has fewer than k digits, it returns 0.

For example, in the number 4567, 7 is the 1st digit from the right, 6 is the 2nd digit from the right, and the 5th digit
from the right is 0 (since there are only 4 digits).

Important: You may not use strings or indexing for this problem. Try to solve this problem using only one line.

Hint: Lambda expressions.

Hint: Use floor dividing by a power of 10 gets rid of the rightmost digits.

def find_digit(k):
"""Returns a function that returns the kth digit of x.

>>> find_digit(2)(3456)
5
>>> find_digit(2)(5678)
7
>>> find_digit(1)(10)
0
>>> find_digit(4)(789)
0
"""
assert k > 0
"*** YOUR CODE HERE ***"

First remove all of the digits after digit k, at which point digit k will be the last digit.

Q4: Match Maker

Implement match_k, which takes in an integer k and returns a function that takes in a variable x and returns True
if all the digits in x that are k apart are the same.

For example, match_k(2) returns a one argument function that takes in x and checks if digits that are 2 away in x
are the same.

match_k(2)(1010) has the value of x = 1010 and digits 1, 0, 1, 0 going from left to right. 1 == 1 and 0 == 0, so
the match_k(2)(1010) results in True.

match_k(2)(2010) has the value of x = 2010 and digits 2, 0, 1, 0 going from left to right. 2 != 1 and 0 == 0, so
the match_k(2)(2010) results in False.

Important: You may not use strings or indexing for this problem.

Hint: Floor dividing by powers of 10 gets rid of the rightmost digits.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1

Environment Diagrams, Higher-Order Functions 5

def match_k(k):
"""Returns a function that checks if digits k apart match.

>>> match_k(2)(1010)
True
>>> match_k(2)(2010)
False
>>> match_k(1)(1010)
False
>>> match_k(1)(1)
True
>>> match_k(1)(2111111111111111)
False
>>> match_k(3)(123123)
True
>>> match_k(2)(123123)
False
"""
def check(x):

while x // (10 ** k) > 0:
if ____________________________:

return ____________________________
x //= 10

In each iteration, compare the last digit with the one that is k positions before it.

Document the occasion
Please all fill out the attendance form (one submission per person per week).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://forms.gle/UCYakosihNmKSuZE9

	Getting Started [5 minutes]
	Q1: Warm Up

	Call Expressions [15 minutes]
	Higher-Order Functions [60 minutes]
	Q2: Make Keeper
	Q3: Digit Finder
	Q4: Match Maker

	Document the occasion

