
CS 61A Linked Lists
Fall 2024 Discussion 8: October 23, 2024

Switch to Pensieve:

• Everyone: Go to pensieve.co, log in with your @berkeley.edu email, and enter your group number (which
was in the email that assigned you to this lab).

Once you’re on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).
If for some reason Penseive doesn’t work, return to this page and continue with the discussion.

Getting Started
To get help from a TA, If you do not have an in-person TA, you can reach your TA using this Zoom link.

If there are fewer than 3 people in your group, feel free to merge your group with another group in the room.

Everybody say your name and your birthday and then tell the group about your favorite birthday party you’ve
attended (either for your birthday or someone else’s).

Pro tip: Groups tend not to ask for help unless they’ve been stuck for a looooooong time. Try asking for help
sooner. We’re pretty helpful! You might learn something.

Linked Lists
A linked list is a Link object or Link.empty.

You can mutate a Link object s in two ways: - Change the first element with s.first = ... - Change the rest of
the elements with s.rest = ...

You can make a new Link object by calling Link: - Link(4) makes a linked list of length 1 containing 4. - Link(4, s)
makes a linked list that starts with 4 followed by the elements of linked list s.

https://tutor.pensieve.co/schools/berkeley/all/cs61a/cs61a_fa24/5a1dfd94-63f2-4aa9-a859-a989e604ef53/open
https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1

2 Linked Lists

class Link:
"""A linked list is either a Link object or Link.empty

>>> s = Link(3, Link(4, Link(5)))
>>> s.rest
Link(4, Link(5))
>>> s.rest.rest.rest is Link.empty
True
>>> s.rest.first * 2
8
>>> print(s)
<3 4 5>
"""
empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest:

rest_repr = ', ' + repr(self.rest)
else:

rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'

def __str__(self):
string = '<'
while self.rest is not Link.empty:

string += str(self.first) + ' '
self = self.rest

return string + str(self.first) + '>'

Drawing time: Pick a way for your group to draw diagrams. Paper, a whiteboard, or a tablet, are all fine. If you
don’t have anything like that, ask another group in the room if they have extra paper.

Q1: Strange Loop

In lab, there was a Link object with a cycle that represented an infinite repeating list of 1’s.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists 3

>>> ones = Link(1)
>>> ones.rest = ones
>>> [ones.first, ones.rest.first, ones.rest.rest.first, ones.rest.rest.rest.first]
[1, 1, 1, 1]
>>> ones.rest is ones
True

Implement strange_loop, which takes no arguments and returns a Link object s for which s.rest.first.rest is
s.

Draw a picture of the linked list you want to create, then write code to create it.

For s.rest.first.rest to exist at all, the second element of s, called s.rest.first, must itself be a linked list.

Making a cycle requires two steps: making a linked list without a cycle, then modifying it. First create, for example,
s = Link(6, Link(Link(1))), then change s.rest.first.rest to create the cycle.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Linked Lists

def strange_loop():
"""Return a Link s for which s.rest.first.rest is s.

>>> s = strange_loop()
>>> s.rest.first.rest is s
True
"""
"*** YOUR CODE HERE ***"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists 5

Q2: Sum Two Ways

Implement both sum_rec and sum_iter. Each one takes a linked list of numbers s and a non-negative integer k and
returns the sum of the first k elements of s. If there are fewer than k elements in s, all of them are summed. If k is
0 or s is empty, the sum is 0.

Use recursion to implement sum_rec. Don’t use recursion to implement sum_iter; use a while loop instead.

def sum_rec(s, k):
"""Return the sum of the first k elements in s.

>>> a = Link(1, Link(6, Link(8)))
>>> sum_rec(a, 2)
7
>>> sum_rec(a, 5)
15
>>> sum_rec(Link.empty, 1)
0
"""
Use a recursive call to sum_rec; don't call sum_iter
"*** YOUR CODE HERE ***"

def sum_iter(s, k):
"""Return the sum of the first k elements in s.

>>> a = Link(1, Link(6, Link(8)))
>>> sum_iter(a, 2)
7
>>> sum_iter(a, 5)
15
>>> sum_iter(Link.empty, 1)
0
"""
Don't call sum_rec or sum_iter
"*** YOUR CODE HERE ***"

Add s.first to the sum of the first k-1 elements in s.rest. Your base case condition should include s is Link.
empty so that you’re checking whether s is empty before ever evaluating s.first or s.rest.

Introduce a new name, such as total, then repeatedly (in a while loop) add s.first to total, set s = s.rest to
advance through the linked list, and reduce k by one.

Discussion time: When adding up numbers, the intermediate sums depend on the order. (1 + 3) + 5 and 1 +
(3 + 5) both equal 9, but the first one makes 4 along the way while the second makes 8 along the way. For the

same linked list s and length k, will sum_rec and sum_iter both make the same intermediate sums along the way?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Linked Lists

For a summation, the order of additions doesn’t affect the result, but for other operations this ordering matters. If
you’re not sure why, spend a few minutes talking to your TA about when it might make a difference.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists 7

Q3: Overlap

Implement overlap, which takes two linked lists of numbers called s and t that are sorted in increasing order and
have no repeated elements within each list. It returns the count of how many numbers appear in both lists.

This can be done in linear time in the combined length of s and t by always advancing forward in the linked list
whose first element is smallest until both first elements are equal (add one to the count and advance both) or one list
is empty (time to return). Here’s a lecture video clip about this (but the video uses Python lists instead of linked
lists).

Take a vote to decide whether to use recursion or iteration. Either way works (and the solutions are about the same
complexity/difficulty).

def overlap(s, t):
"""For increasing s and t, count the numbers that appear in both.

>>> a = Link(3, Link(4, Link(6, Link(7, Link(9, Link(10))))))
>>> b = Link(1, Link(3, Link(5, Link(7, Link(8)))))
>>> overlap(a, b) # 3 and 7
2
>>> overlap(a.rest, b) # just 7
1
>>> overlap(Link(0, a), Link(0, b))
3
"""
"*** YOUR CODE HERE ***"

if s is Link.empty or t is Link.empty:
return 0

if s.first == t.first:
return __________________

elif s.first < t.first:
return __________________

elif s.first > t.first:
return __________________

k = 0
while s is not Link.empty and t is not Link.empty:

if s.first == t.first:

elif s.first < t.first:

elif s.first > t.first:

return k

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/UZ9nOiyMQ8A?si=W0N2ecsTHR5p8c2z&t=137

8 Linked Lists

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Important: Please help put the furniture in the room back where you found it before you leave. Thanks!

Extra Challenge
This last question is similar in complexity to an A+ question on an exam. Feel free to skip it, but it’s a fun one, so
try it if you have time.

Q4: Decimal Expansion

Definition. The decimal expansion of a fraction n/d with n < d is an infinite sequence of digits starting with
the 0 before the decimal point and followed by digits that represent the tenths, hundredths, and thousands place
(and so on) of the number n/d. E.g., the decimal expansion of 2/3 is a zero followed by an infinite sequence of 6’s:
0.6666666….

Implement divide, which takes positive integers n and d with n < d. It returns a linked list with a cycle containing
the digits of the infinite decimal expansion of n/d. The provided display function prints the first k digits after the
decimal point.

For example, 1/22 would be represented as x below:

>>> 1/22
0.045454545454545456
>>> x = Link(0, Link(0, Link(4, Link(5))))
>>> x.rest.rest.rest.rest = x.rest.rest
>>> display(x, 20)
0.04545454545454545454...

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://forms.gle/UCYakosihNmKSuZE9

Linked Lists 9

def display(s, k=10):
"""Print the first k digits of infinite linked list s as a decimal.

>>> s = Link(0, Link(8, Link(3)))
>>> s.rest.rest.rest = s.rest.rest
>>> display(s)
0.8333333333...
"""
assert s.first == 0, f'{s.first} is not 0'
digits = f'{s.first}.'
s = s.rest
for _ in range(k):

assert s.first >= 0 and s.first < 10, f'{s.first} is not a digit'
digits += str(s.first)
s = s.rest

print(digits + '...')

def divide(n, d):
"""Return a linked list with a cycle containing the digits of n/d.

>>> display(divide(5, 6))
0.8333333333...
>>> display(divide(2, 7))
0.2857142857...
>>> display(divide(1, 2500))
0.0004000000...
>>> display(divide(3, 11))
0.2727272727...
>>> display(divide(3, 99))
0.0303030303...
>>> display(divide(2, 31), 50)
0.06451612903225806451612903225806451612903225806451...
"""
assert n > 0 and n < d
result = Link(0) # The zero before the decimal point
"*** YOUR CODE HERE ***"

return result

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Linked Lists

Place the division pattern from the example above in a while statement:

>>> q, r = 10 * n // d, 10 * n % d
>>> tail.rest = Link(q)
>>> tail = tail.rest
>>> n = r

While constructing the decimal expansion, store the tail for each n in a dictionary keyed by n. When some n appears
a second time, instead of constructing a new Link, set its original link as the rest of the previous link. That will
form a cycle of the appropriate length.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Getting Started
	Linked Lists
	Q1: Strange Loop
	Q2: Sum Two Ways
	Q3: Overlap

	Document the Occasion
	Extra Challenge
	Q4: Decimal Expansion

