
CS 61A Macros
Fall 2024 Discussion 11: November 20, 2024

Switch to Pensieve:

• Everyone: Go to pensieve.co, log in with your @berkeley.edu email, and enter your group number (which
was in the email that assigned you to this lab).

Once you’re on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).
If for some reason Penseive doesn’t work, return to this page and continue with the discussion.

Getting Started
To get help from a TA, If you do not have an in-person TA, you can reach your TA using this Zoom link.

If there are fewer than 3 people in your group, feel free to merge your group with another group in the room.

Everybody say your name, and then your favorite kind of pie.

Macros
A macro is a code transformation that is created using define-macro and applied using a call expression. A macro
call is evaluated by:

1. Binding the formal paramters of the macro to the unevaluated operand expressions of the macro call.
2. Evaluating the body of the macro, which returns an expression.
3. Evaluating the expression returned by the macro in the environment of the original macro call.

scm> (define-macro (twice expr) (list 'begin expr expr))
twice
scm> (twice (+ 2 2)) ; evaluates (begin (+ 2 2) (+ 2 2))
4
scm> (twice (print (+ 2 2))) ; evaluates (begin (print (+ 2 2)) (print (+ 2 2)))
4
4

Debugging tip: In order to see what expression a macro creates, change it to a regular procedure, then call it with
quoted arguments.

scm> (define (twice expr) (list 'begin expr expr)) ; Same definition, but with define
instead of define-macro

twice
scm> (twice '(print (+ 2 2))) ; Called with a quoted argument
(begin (print (+ 2 2)) (print (+ 2 2)))
scm> (eval (twice '(print (+ 2 2)))) ; Evaluating the result has the same

behavior as the original macro
4
4

https://tutor.pensieve.co/schools/berkeley/all/cs61a/cs61a_fa24/f69c3ec0-bbc1-4d3e-a24f-6f4d9d3fba25/open
https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1


2 Macros

Quasiquotation uses the backtick (below the tilde) to quote the next expression. Sub-expressions within the
quasiquoted expression can be unquoted using a comma. Here are examples:

scm> (define x (+ 2 1))
x
scm> `(x ,x)
(x 3)
scm> (define s '(1 2 3))
s
scm> `(+ x ,(cons '* s))
(+ x (* 1 2 3))

Q1: Mystery Macro

Figure out what this mystery-macro does. Try to describe what it does by reading the code and discussing examples
as a group.

(define-macro (mystery-macro expr old new)
(mystery-helper expr old new))

(define (mystery-helper e o n)
(if (pair? e)

(cons (mystery-helper (car e) o n) (mystery-helper (cdr e) o n))
(if (eq? e o) n e)))

Pro Tip: Please don’t just look at the hints right away. Hints are for when you get stuck.

Here are some example uses of mystery-macro that could help you understand what it does and how it might be
used.

scm> (define five 5)
five
scm> (mystery-macro (* x x) x five)
25
scm> (mystery-macro (* x x) x (+ five 1))
36
scm> (mystery-macro '(* x x) x y)
(* y y)
scm> (mystery-macro (> (x) (> (y) (+ x y))) > lambda)
(lambda (x) (lambda (y) (+ x y)))
scm> (mystery-macro (begin e e e) e (print five))
5
5
5

The mystery-macro replaces all instances of an old symbol with a new expression before evaluating the expression
expr.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Macros 3

Q2: Multiple Assignment

In Scheme, the expression returned by a macro procedure is evaluated in the same environment in which the macro
was called. Therefore, it’s possible to return a define expression from a macro and have it affect the environment in
which the macro was called. This differs from a regular scheme procedure that contains a define expression, which
would only affect the procedure’s local frame.

In Python, we can bind two names to values in one line as follows:

>>> x, y = 1 + 1, 3 # now x is bound to 2 and y is bound to 3
>>> x, y = y, x # swap the values of x and y
>>> x
3
>>> y
2

Implement the assign Scheme macro, which takes in two symbols sym1 and sym2 as well as two expressions expr1
and expr2. It should bind sym1 to the value of expr1 and sym2 to the value of expr2 in the environment from which
the macro was called.

scm> (assign x y (+ 1 1) 3) ; now x is bound to 2 and y is bound to 3
scm> (assign x y y x) ; swap the values of x and y
scm> x
3
scm> y
2

Make sure that expr2 is evaluated before sym1 is changed. Assume that expr1 and expr2 do not have side effects
(and so do not contain define or assign expressions).

(define-macro (assign sym1 sym2 expr1 expr2)
`(begin

(define ,sym1 ,expr1)
(define ___ ___)))

(assign x y (+ 1 1) 3)
(assign x y y x)
(expect x 3)
(expect y 2)

Call eval on expr2 so that its value is included in the define expression created by assign: ,(eval expr2). That
way, the define for expr1 won’t affect the value of expr2, because expr2 will already have been evaluated.

Presentation Time: Come up with a one-sentence explanation of why the second define line has to be different
from the first define line in this implementation. Choose someone from your group who hasn’t presented recently
to say this explanation to your TA for feedback in person or on Zoom.

For an optional extra challenge, try these additional tests that make sure assign works correctly even when the

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1


4 Macros

value of expr2 is not a number, but instead a symbol.

(define z 'x) ; z is bound to the symbol x
(assign v w 2 z) ; now v is bound to 2 and w is bound to the symbol x
(assign v w w v) ; swap the values of v and w
(expect v x)
(expect w 2)

In order to ensure that the value of expr2 is not evaluated a second time, quote the result of evaluating it.

For example, (assign v w 2 z) should be equivalent to:

(begin
(define v 2)
(define w (quote x)))

In this begin expression, (quote x) comes from first evaluating z and then quoting the result.

Q3: Switch

Define the macro switch, which takes in an expression expr and a list of pairs called cases where the first element of
the pair is some number and the second element is a single expression. switch will evaluate the expression contained
in of cases that corresponds to the number that expr evaluates to.

scm> (switch (+ 1 1) ((1 (print 'a))
(2 (print 'b))
(3 (print 'c))))

b

You may assume that the value expr evaluates to is always the first element of one of the pairs in cases. You can
also assume that the first value of each pair in cases is a number and the second expression does not contain the
symbol val.

Use equal? to check if two numbers are equal.

For the example shown above, build the following expression:

(let ((val (+ 1 1)))
(cond ((equal? val 1) (print 'a))

((equal? val 2) (print 'b))
((equal? val 3) (print 'c))))

This expression first assigns val to 3 and then compares val to the first element in each pair in cases.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Macros 5

(define-macro (switch expr cases)
`(let ((val ,expr))
,(cons
'YOUR-CODE-HERE

(map (lambda (case) (cons
'YOUR-CODE-HERE

(cdr case)))
cases))))

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://forms.gle/UCYakosihNmKSuZE9

	Getting Started
	Macros
	Q1: Mystery Macro
	Q2: Multiple Assignment
	Q3: Switch


	Document the Occasion

