
CS 61A Structure and Interpretation of Computer Programs
Fall 2024 Final Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (6.0 points) What Would Python Display?

Assume the following code has been executed.

def cut(s):
this = 1
for x in s:

if this:
this = x
yield this

else:
this = True

def paste(n):
yield n
for x in paste(n + 1):

yield 2 * x
yield n

def copy(t, k):
return [next(t) for x in range(k)]

nums = [0, 2, 4, 6, 8]

Write the output that would be displayed by printing the result of each expression. If an error occurs, write
ERROR.

(a) (2.0 pt) list(cut(nums))

[0, 2, 4, 6, 8]

 [0, 4, 6, 8]

[1, 0, 2, 4, 6, 8]

[1, 0, 4, 6, 8]

[1, 2, 4, 6, 8]

[2, 4, 6, 8]

(b) (2.0 pt) list(cut(map(lambda x: x - 4, cut(nums))))

[-4, 0, 4]

(c) (2.0 pt) copy(paste(0), 3)

[0, 2, 8]

Exam generated for <EMAILADDRESS> 4

2. (4.0 points) Line Diagram

Complete the environment diagram to answer the following questions. Only the questions will be scored.

(a) (2.0 pt) What is displayed by print(log) on line 15?

[]

[3]

 [[3]]

[[[3]]]

[2, 3]

[2, [3]]

[2, [[3]]]

[[2], [3]]

[[2], [[3]]]

(b) (2.0 pt) What is displayed by print(z) on line 16?

2

 4

6

7

9

12

Exam generated for <EMAILADDRESS> 5

3. (5.0 points) Make Tens

A list of numbers is easier for a person to sum up if it can be split into groups that all sum to 10. Implement
tens, which takes a list of positive numbers s. It returns True if, for every positive integer i where 10 * i <=
sum(s), there is a positive k that satisfies sum(s[0:k]) == 10 * i. Otherwise, it returns False.

def tens(s):
"""Return whether every multiple of 10 less than or equal to sum(s) appears as a prefix of s.
>>> tens([3, 2, 2, 3, 6, 2, 2, 4, 1, 5, 2]) # sum(s[:4])==10, sum(s[:7])==20, sum(s[:10])==30
True
>>> tens([3, 2, 2, 3, 6, 2, 6, 1, 5, 2]) # sum(s[:4])==10, but no slice starting at 0 sums to 20
False
"""
t = 0
for x in s:

t += x
if _______:

(g)
return _______

(h)
if t == _______:

(i)
t = _______

(j)
return True

(a) (1.0 pt) Fill in blank (g).

t == 10

t != 10

 t > 10

t < 10

(b) (2.0 pt) Fill in blank (h). Select all correct answers.

� False

2 t % 10 == 0

2 t % 10 != 0

2 sum(s) % 10 == 0

2 sum(s) % 10 != 0

(c) (1.0 pt) Fill in blank (i).

0

 10

x

(d) (1.0 pt) Fill in blank (j).

0

Exam generated for <EMAILADDRESS> 6

4. (13.0 points) Count Misses

(a) (6.0 points)

Implement the Counter class. A Counter has a count of the number of times inc has been invoked on
itself or any of its offspring. Its offspring are the Counters created by its spawn method or the spawn
method of any of its offspring.

class Counter:
"""Counts how many times inc has been invoked on itself or any of its offspring.

>>> total = Counter()
>>> odd, even = total.spawn(), total.spawn() # these are offspring of total
>>> one, three = odd.spawn(), odd.spawn() # these are offspring of odd and total
>>> for c in [one, even, three, even, odd, even]:
... c.inc()
>>> [c.count for c in [one, three, even, odd, total]]
[1, 1, 3, 3, 6]
"""
def __init__(self, parent=None):

self.parent = parent

(a)

def inc(self):
self.count += 1
_______:

(b)

(c)

def spawn(self):
return _______

(d)

i. (1.0 pt) Fill in blank (a).

self.count = 0

ii. (1.0 pt) Fill in blank (b).

if parent is not None:

 if self.parent is not None:

while parent is not None:

while self.parent is not None:

for p in parent:

for p in self.parent:

Exam generated for <EMAILADDRESS> 7

iii. (2.0 pt) Fill in blank (c).

p += 1

p.count += 1

p.inc()

p.count.inc()

parent += 1

parent.count += 1

parent.inc()

parent.count.inc()

self.parent += 1

self.parent.count += 1

 self.parent.inc()

self.parent.count.inc()

iv. (2.0 pt) Fill in blank (d).

self.parent

self.parent.spawn()

self.spawn()

Counter()

Counter().spawn()

 Counter(self)

Counter(self.count)

Exam generated for <EMAILADDRESS> 8

(b) (7.0 points)

Implement the MissDict class. A MissDict has a dictionary d. Its get method takes an iterable keys,
returns a list of all values in d that correspond to those keys, and counts the number of keys that did not
appear in d (called misses). Printing a MissDict displays a fraction in which:

• The numerator is the number of misses during all calls to get for that particular MissDict instance.
• The denominator is the number of misses during all calls to get for any MissDict instance.

Assume Counter is implemented correctly.

class MissDict:
"""Has a dict, gets a list of values for an iterable of keys,
and counts the number of keys that are not in the dict.

>>> double = MissDict({1: 2, 2: 4, 3: 6, 5: 10})
>>> half = MissDict({2: 1.0, 3: 1.5, 4: 2.0})
>>> double.get([1, 3, 5, 2, 4]) # No value for key 4 (1 miss)
[2, 6, 10, 4]
>>> double.get([5, 4, 3, 0, 4]) # No value for keys 4 or 0 or 4 (3 misses)
[10, 6]
>>> half.get([1, 3, 5, 2, 4]) # No value for keys 1 or 5 (2 misses)
[1.5, 1.0, 2.0]
>>> print(double) # double had 4 misses & half had 2 misses
4/6 of the misses
"""
misses = Counter()
def __init__(self, d):

assert isinstance(d, dict)
self.d = d
self.misses = _______

(e)
def get(self, keys):

result = []
for k in keys:

if k in self.d:

(f)
else:

(g)

return result

def __str__(self):
return f'_______ of the misses'

(h)

i. (2.0 pt) Fill in blank (e). Select all correct answers.

2 MissDict.spawn()

� MissDict.misses.spawn()

2 Counter()

2 Counter(MissDict)

� Counter(MissDict.misses)

Exam generated for <EMAILADDRESS> 9

ii. (2.0 pt) Fill in blank (f).

result.append(self.d[k])

iii. (1.0 pt) Fill in blank (g).

misses.inc()

misses.count += 1

 self.misses.inc()

self.misses.count += 1

MissDict.misses.inc()

MissDict.misses.count += 1

iv. (2.0 pt) Fill in blank (h).

{misses.count / MissDict.misses.count}

{misses.count} / {MissDict.misses.count}

{misses.count / self.MissDict.misses.count}

{misses.count} / {self.MissDict.misses.count}

{self.misses.count / misses.count}

{self.misses.count} / {misses.count}

{self.misses.count / MissDict.misses.count}

 {self.misses.count} / {MissDict.misses.count}

{self.misses.count / self.MissDict.misses.count}

{self.misses.count} / {self.MissDict.misses.count}

Exam generated for <EMAILADDRESS> 10

5. (16.0 points) Promotion to CS 61B

Definition. Given a sequence s and positions (indices) i and j in s with i < j, promoting an element to
i from j means reordering s so that the element originally at position j is now at position i, all elements
originally positioned between i and j increase their position (index) by one, and all other elements stay where
they are. The beginning of s is position 0. For example, in the list [30, 60, 90, 120, 150, 180], promoting
to 2 from 4 would place the number 150 (original position 4) just before 90 (originally position 2) and increases
the positions of both 90 and 120 by one, resulting in [30, 60, 150, 90, 120, 180].

(a) (4.0 points)

Implement promote, which takes a list of numbers s and two non-negative integers i and j. It returns a
new list promoting to i from j in s. Do not mutate s.

Hint: For any list s, s[len(s):] evaluates to [].

def promote(s, i, j):
"""Return a list in which s[j] is at index i without mutating s.

>>> promote([3, 6, 9, 12, 15, 18], 2, 4)
[3, 6, 15, 9, 12, 18]
>>> promote([3, 6, 9, 12, 15, 18], 0, 4)
[15, 3, 6, 9, 12, 18]
"""
assert i >= 0 and i < j and j < len(s)
return s[:i] + _______ + _______ + s[_______:]

(a) (b) (c)

i. (2.0 pt) Fill in blank (a). Select all correct answers.

2 s[j]

� [s[j]]

2 list(s[j])

2 s[j:j]

� s[j:j+1]

ii. (1.0 pt) Fill in blank (b).

 s[i:j]

s[i+1:j]

s[i:j+1]

s[i+1:j+1]

iii. (1.0 pt) Fill in blank (c).

i

i+1

j

 j+1

Exam generated for <EMAILADDRESS> 11

(b) (4.0 points)

Implement promotions, which takes two lists of numbers s and t that have the same elements, possibly in
different orders. It returns the minimum number of promotions that must be applied to s so that it has
the same order as t. Assume promote is implemented correctly.

def promotions(s, t):
"""Return the minimum times promote must be called to start from s and return t.

>>> promotions([2, 4, 6, 8, 10, 12],
... [2, 6, 8, 4, 12, 10]) # promote (1, 2) then (2, 3) then (4, 5)
3
>>> promotions([6, 1, 6, 1, 6, 1],
... [1, 1, 6, 6, 1, 6]) # promote (0, 1) then (1, 5)
2
>>> promotions([1, 2, 3], [1, 2, 3]) # no promotions needed
0
>>> promotions([1, 2, 1, 2], [2, 1, 2, 1]) # promote (0, 3)
1
"""
assert sorted(s) == sorted(t) # Check that s & t have the same elements (disregarding order)
if len(s) == 0:

return 0
elif _______:

(d)
return promotions(s[1:], t[1:])

else:
return 1 + min([promotions(_______, t[1:]) for j in range(1, len(s)) if _______])

(e) (f)

i. (1.0 pt) Fill in blank (d).

s == t

s != t

 s[0] == t[0]

s[0] != t[0]

sorted(s) == t

s == sorted(t)

ii. (2.0 pt) Fill in blank (e).

promote(s, 0, j)[1:] OR s[:j] + s[j+1:]

iii. (1.0 pt) Fill in blank (f).

s[0] == t[j]

s[1] == t[j]

 s[j] == t[0]

s[j] == t[1]

Exam generated for <EMAILADDRESS> 12

(c) (8.0 points)

Implement promote_link, which takes a Link instance s (a non-empty linked list) and two non-negative
integers i and j with i<j and j less than the length of s. It mutates s by promoting to i from j and then
returns s.

The Link class appears on Page 2 (left side) of the Midterm 2 Study Guide.

def promote_link(s, i, j):
"""Mutate linked list s so that the item at index j is at index i.

>>> a = Link(3, Link(6, Link(9, Link(12, Link(15, Link(18))))))
>>> print(promote_link(a, 2, 4))
<3 6 15 9 12 18>
>>> print(promote_link(a, 0, 4))
<12 3 6 15 9 18>
>>> promote_link(a, 1, 3) is a
True
"""
assert i >= 0 and i < j
if i > 0:

(g)

else:

insert, tail = s.first, s.rest

while j > 0:

_______ # Hint: use multiple assignment: ___ , ___ = ___ , ___
(h)

tail, j = tail.rest, j-1

_______ = insert
(i)

return _______
(j)

i. (2.0 pt) Fill in blank (g).

promote_link(s.rest, i-1, j)

return promote_link(s.rest, i-1, j)

promote_link(s.rest, i, j-1)

return promote_link(s.rest, i, j-1)

 promote_link(s.rest, i-1, j-1)

return promote_link(s.rest, i-1, j-1)

ii. (2.0 pt) Fill in blank (h). Hint: Use multiple assignment: ___ , ___ = ___ , ___

insert, tail.first = tail.first, insert

Exam generated for <EMAILADDRESS> 13

iii. (1.0 pt) Fill in blank (i).

 s.first

s.rest.first

tail.first

tail.rest.first

iv. (1.0 pt) Fill in blank (j).

 s

tail

Link(insert, tail.rest)

Link(s.first, tail.rest)

v. (2.0 pt) What is displayed by the call to print in this code?

odds = Link(3, Link(5, Link(7, Link(9))))
for i in range(3):

promote_link(odds, 0, 3)

print(odds)

<3 5 7 9>

<3 9 7 5>

 <5 7 9 3>

<5 9 7 3>

<9 7 5 3>

<9 3 5 7>

Exam generated for <EMAILADDRESS> 14

6. (12.0 points) Fresh Produce

(a) (5.0 points)

Implement products, which takes a Tree instance t with positive integer labels and a positive integer n.
It returns True if every path from the root of t to a leaf has labels that equal n when multiplied together.

The Tree class appears on Page 2 (left side) of the Midterm 2 Study Guide.

def products(t, n):
"""Return whether the product of labels along every root-to-leaf path is n.

>>> products(Tree(1, [Tree(2, [Tree(3)]), Tree(6)]), 6)
True
>>> products(Tree(1, [Tree(2, [Tree(3)]), Tree(6)]), 12)
False
>>> products(Tree(1, [Tree(2, [Tree(3)]), Tree(5)]), 6)
False
>>> products(Tree(1, [Tree(5, [Tree(2)]), Tree(12)]), 12)
False
"""
assert type(n) == int
if t.is_leaf():

return _______
(a)

if _______:
(b)

return False

return _______
(c)

i. (1.0 pt) Fill in blank (a).

True

False

 n == t.label

n % t.label == 0

n % t.label > 0

ii. (1.0 pt) Fill in blank (b).

n != t.label

n < t.label

n > t.label

 n % t.label > 0

iii. (3.0 pt) Fill in blank (c). Important: The second argument to a call to products must be an integer
(int).

all([products(b, n // t.label) for b in t.branches])

Exam generated for <EMAILADDRESS> 15

(b) (7.0 points)

Definition. An increasing sequence is a sequence of integers in which each element after the first is larger
than the previous element.

Implement produce, which takes a positive integer n. It returns a Tree of positive integers in which:

• The product of the labels along every root-to-leaf path is n,
• Every increasing sequence of integers starting with 1 that has product n is a root-to-leaf path, and
• Every sequence of siblings (nodes with a common parent) is an increasing sequence.

def produce(n):
"""Return the largest tree in which the labels for every root-to-label path
are increasing and have product n. Put all siblings in increasing order.

>>> produce(12)
Tree(1, [Tree(2, [Tree(6)]), Tree(3, [Tree(4)]), Tree(12)])
>>> print(produce(24)) # Paths are 1-2-3-4, 1-2-12, 1-3-8, 1-4-6, and 1-24
1

2
3

4
12

3
8

4
6

24
"""
def grow(t, x):

for k in range(_______, x + 1):
(d)

if _______ % k == 0:
(e)

branch = _______
(f)

if _______:
(g)

t.branches.append(branch)
return t

return grow(Tree(1), n)

i. (1.0 pt) Fill in blank (d).

0

1

x

t.label

 t.label + 1

Exam generated for <EMAILADDRESS> 16

ii. (1.0 pt) Fill in blank (e).

 x

n

t.label

(t.label // x)

(t.label // k)

iii. (2.0 pt) Fill in blank (f).

Tree(k)

Tree(x)

grow(Tree(k), x)

grow(Tree(x), k)

 grow(Tree(k), x // k)

grow(Tree(x), x // k)

iv. (3.0 pt) Fill in blank (g).

not branch.isleaf()orx == k

Exam generated for <EMAILADDRESS> 17

7. (14.0 points) A Pair of Schemes

(a) (4.0 points)

Implement the Scheme procedure all-pairs, which takes a procedure f and a list s. It returns #t if (f x
y) is #t for every pair of adjacent elements x and y in s. Assume f always returns either #t or #f.

(define (inc x y) (= (+ x 1) y)) ; Whether x+1 equals y

;;; Return #t if (f x y) is #t for every pair of adjacent values (x, y) in list s.
;;;
;;; scm> (all-pairs inc '(3 4 5 6 7 8))
;;; #t
;;; scm> (all-pairs inc '(3 4 5 8 7 8))
;;; #f
;;; scm> (all-pairs inc '(3))
;;; #t
(define (all-pairs f s)

(or (null? s) (null? (cdr s))
(and _______ (all-pairs f _______))))

(a) (b)

i. (3.0 pt) Fill in blank (a). Select all correct answers.

2 (car s) (cdr s)

2 (car s) (car (cdr s))

2 f (car s) (cdr s)

2 f (car s) (car (cdr s))

2 f((car s) (cdr s))

2 f((car s) (car (cdr s)))

2 (f (car s) (cdr s))

� (f (car s) (car (cdr s)))

2 (apply f (car s) (cdr s))

2 (apply f (car s) (car (cdr s)))

ii. (1.0 pt) Fill in blank (b).

s

 (cdr s)

(cdr (cdr s))

(cons (car s) (cdr s))

(cons (car s) (cdr (cdr s)))

Exam generated for <EMAILADDRESS> 18

(b) (6.0 points)

Implement the Scheme procedure show-pairs, which takes a list s and returns a list of every pair of
adjacent elements in s. A pair is a two-element list.

;;; Return a list of every pair of adjacent elements in list s.
;;;
;;; scm> (show-pairs '(3 5 7 9 11 13))
;;; ((3 5) (5 7) (7 9) (9 11) (11 13))
(define (show-pairs s)

(if (or (null? s) (null? (cdr s))) nil
(_______ _______ (show-pairs _______))))

(a) (b) (c)

i. (1.0 pt) Fill in blank (a).

car

cdr

 cons

list

append

ii. (3.0 pt) Fill in blank (b).

(list (car s) (car (cdr s)))

iii. (1.0 pt) Fill in blank (c).

s

 (cdr s)

(cdr (cdr s))

(cons (car s) (cdr s))

(cons (car s) (cdr (cdr s)))

iv. (1.0 pt) What order of growth describes the time it takes to execute (unpair s) in terms of the
length of the input list s, assuming that car, cdr, cons, and null? are all constant-time operations?

(define (unpair s) (cond ((null? s) nil)
((null? (cdr s)) (car s))
(else (cons (car (car s)) (unpair (cdr s))))))

constant

logarithmic

 linear

quadratic

exponential

Exam generated for <EMAILADDRESS> 19

(c) (4.0 points)

Implement the Scheme procedure all-pairs-exp, which takes a procedure name proc-name (a symbol)
and a list s. It returns an and expression that calls the procedure named by proc-name on every adjacent
pair of elements in s. Assume show-pairs is implemented correctly.

;;; Return an and expression that calls the procedure called proc-name on
;;; every adjacent pair of elements in s.
;;;
;;; scm> (all-pairs-exp 'inc '(3 4 5 6 7 8))
;;; (and (inc 3 4) (inc 4 5) (inc 5 6) (inc 6 7) (inc 7 8))
;;; scm> (eval (all-pairs-exp 'inc '(3 4 5 6 7 8)))
;;; #t
(define (all-pairs-exp proc-name s)

(_______ (map _______ (show-pairs s))))
(a) (b)

i. (1.0 pt) Fill in blank (a).

and

'and

cons and

 cons 'and

ii. (3.0 pt) Fill in blank (b).

(lambda (pair) (cons proc-name pair)) or (lambda (pair) (list proc-name
(car pair) (car (cdr pair))))

Exam generated for <EMAILADDRESS> 20

8. (5.0 points) Arcane Jobs

The Council of Piltover wants a list of all the people living in regions it governs that have unique jobs. Create a
table with columns labeled name and job that contains one row for each person living in a region governed by
the "council" who is the only person with their job among everybody living in regions ruled by the council.

The who table has one row per person and columns for their name (string; each row has a unique value), the
region (string) they live in, and their job (string). The gov table has one row per region and columns for
its name called place (string; each row has a unique value) and the group that rules over it called ruler
(string).

Here’s an example of the contents of the who and gov tables and the expected result for a query based on these.

SELECT name, job FROM _______ WHERE _______ AND ruler = "council" _______ ;
(a) (b) (c)

(a) (1.0 pt) Fill in blank (a).

who

who AS a, who AS b

 who, gov

who AS a, who AS b, gov

(b) (2.0 pt) Fill in blank (b).

COUNT(*) = 1

place = "council"

a.job = b.job

a.job != b.job

 region = place

a.region = place

a.region = b.region AND a.region = place

a.job = b.job AND a.region = place

Exam generated for <EMAILADDRESS> 21

(c) (2.0 pt) Fill in blank (c). You may write AND to continue the WHERE clause (but you don’t have to). You
may also include other clauses such as GROUP BY, ORDER BY, HAVING, and LIMIT (but you don’t have to).

GROUP BY job HAVING COUNT(*) = 1

Exam generated for <EMAILADDRESS> 22

9. (0.0 points) Ape Pull Us

These two A+ questions are not worth any points. They can only affect your course grade if you
have a high A and might receive an A+. Finish the rest of the exam first!

(a) Implement all-next, a macro that takes an expression x-expr and a list of numbers. It returns #t if
every element in s besides the first is equal to the value of x-expr when x is bound to the previous element
in s. It returns #f otherwise. Assume x-expr does not contain the symbol y.

You may call all-pairs from Q6. Important: The template has a quasiquote before the blank.

;;; Return whether every value in s that follows another value x is equal
;;; to the x-expr evaluated when x is the previous value.
;;;
;;; scm> (all-next (+ x 2) '(3 5 7 9 11 13))
;;; #t
;;; scm> (all-next (* x 2) '(2 4 8 16 32 64))
;;; #t
;;; scm> (all-next (+ x 2) '(3 5 7 8 11 13))
;;; #f
;;; scm> (all-next (+ x 4) '(3 5 7 9 11 13))
;;; #f
(define-macro (all-next x-expr s) ` _______)

(all-pairs (lambda (x y) (= ,x-expr y)) ,s)

Exam generated for <EMAILADDRESS> 23

(b) Implement make_tens by filling in the blank in repromote. The make_tens function takes a list of
numbers s. It returns a list t of the same elements reordered so that tens(t) returns True. Return an
order that requires the fewest promotions to reorder s into t. You may use tens from Q2 and promote
from Q4.

def make_tens(s):
"""Return a list t for which tens(t) is true and promotions(s, t) is as small as possible.
If there is no reordering t of s for which tens(t) is true, return None.
>>> make_tens([4, 2, 2, 2, 4, 6, 1, 3, 3, 2, 5]) # promote (6, 7), (7, 9), and (8, 10)
[4, 2, 2, 2, 4, 6, 3, 2, 5, 1, 3]
>>> make_tens([4, 2, 2, 2, 4, 5, 1, 4, 3, 4]) # promote (2, 4), (4, 7), (5, 9), and (8, 9)
[4, 2, 4, 2, 4, 4, 2, 5, 3, 1]
"""
for t in promute(s):

if tens(t):
return t

def promute(s):
for k in range(len(s)):

yield from repromote(s, k)
def repromote(s, k):

if k == 0:
yield s

elif len(s) > 1:
for j in range(len(s)):

for rest in _______:
yield [s[j]] + rest

repromote(s[:j] + s[j+1:], k - min(1, j))

Exam generated for <EMAILADDRESS> 24

No more questions.

