
CS 61A Structure and Interpretation of Computer Programs
Fall 2024 Midterm 1

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) What Would Python Display?

Answer the following questions about the output printed by this code.

def mad(max):
g = lambda: (print(1) or 2) or (print(3) or 4)
print(max(5, 6))
return g

print(mad(print)(), 7, print(8))

(a) (2.0 pt) What is the last line printed?

1 7 8

2 7 8

2 7 None

4 7 8

4 7 None

None 7 8

None 7 None

(b) (4.0 pt) Which of these whole lines appear somewhere in the printed output? Select all that apply.

2 1

2 1 2

2 1 2 3

2 1 2 3 4

2 3

2 5

2 5 6

2 6

2 7

2 8

2 None

2 None None

2 True

(c) (2.0 pt) What order do 1, 6, and 8 appear in the printed output? These numbers may appear as part of
longer lines. If a number appears twice, consider just the first occurence.

1 6 8

1 8 6

6 1 8

6 8 1

8 1 6

8 6 1

Exam generated for <EMAILADDRESS> 4

2. (8.0 points) Which One

Complete the environment diagram below and then answer the questions that follow. There is one question for
each labeled blank in the diagram. The blanks with no labels have no questions associated with them and are
not scored.

(a) (1.0 pt) Fill in blank (a).

0

1

2

3

4

(b) (1.0 pt) Fill in blank (b).

func which(one) [parent=f1]

func which(one) [parent=Global]

func which(one) [parent=switch]

Exam generated for <EMAILADDRESS> 5

(c) (1.0 pt) Fill in blank (c).

(d) (1.0 pt) Fill in blank (d).

0

1

2

3

4

(e) (1.0 pt) Fill in blank (e).

(f) (1.0 pt) Fill in blank (f).

Global

f1

f2

f3

f4

(g) (1.0 pt) Fill in blank (g).

1

2

3

4

5

(h) (1.0 pt) Fill in blank (h).

Exam generated for <EMAILADDRESS> 6

3. (6.0 points) Final Digit

Implement final_digit, which takes a non-negative integer n. As long as n has more than one digit, replace n
with the sum of the digits of n. This process repeats until n becomes a single-digit number, which is returned.

def final_digit(n):
"""Sum the digits of n repeatedly to reach one digit.

>>> final_digit(321) # 3 + 2 + 1 = 6
6
>>> final_digit(987) # 9 + 8 + 7 = 24, and 2 + 4 = 6
6
>>> final_digit(989898989) # The digit sum is 77, 7 + 7 = 14, and 1 + 4 = 5
5
"""
while n >= 10:

s = _______
(a)

_______:
(b)

n, s = n // 10, _______
_______ (c)

(d)
return n

(a) (1.0 pt) Fill in blank (a).

0

n

n % 10

(b) (1.0 pt) Fill in blank (b).

if s

if n

while s

while n

(c) (2.0 pt) Fill in blank (c).

n

s // 10

n % 10

s + n % 10

10 * s + n % 10

(d) (2.0 pt) Fill in blank (d).

Exam generated for <EMAILADDRESS> 7

4. (8.0 points) Close Enough

Implement close, which takes two non-negative integers m and n. It returns whether m can be changed into n
by either inserting one digit, removing one digit, or changing one digit. If m and n are the same number, they
are not close.

def close(m, n):
"""Return whether m can result from starting with n and adding, removing,
or changing one digit.

>>> close(3756, 3456) and close(3456, 346) and close(346, 3456) and close(456, 56)
True
>>> close(5, 5) or close(3456, 3546) or close(3456, 36) or close(34, 3456) or close(345, 456)
False
"""
if m < n:

m, n = n, m
while m or n:

if _______:
(a)

m, n = _______
(b)

else:

return _______ or _______ # Hint: check here that just one change is enough
(c) (d)

return _______
(e)

(a) (1.0 pt) Fill in blank (a).

m == n

m // 10 == n // 10

m // 10 == n

m == n // 10

m % 10 == n % 10

(b) (2.0 pt) Fill in blank (b).

n, m

m // 10, n // 10

m // 10, n

m, n // 10

m % 10, n % 10

Exam generated for <EMAILADDRESS> 8

(c) (2.0 pt) Fill in blank (c).

m == n

m - n < 10

n == 0

m // 10 == n // 10

m % 10 == n % 10

m % 100 == n % 100

(d) (2.0 pt) Fill in blank (d).

m // 10 == n

m // 10 - n < 10

n == 0

m // 10 == 0

m // 100 == n // 10

(m // 10) % 10 == n % 10

(e) (1.0 pt) Fill in blank (e).

m == n

m == 0

n == 0

True

False

Exam generated for <EMAILADDRESS> 9

5. (10.0 points) Shifty

(a) (4.0 points)

Implement shift, which takes a number k and a one-argument function f. It returns a one-argument
function g that takes a number x. For all numbers x, g(x) is equal to f(x + k).

def shift(k, f):
"""Return a function of x that returns f(x+k).

>>> square = lambda x: x * x
>>> g = shift(2, square)
>>> g(3) # square(3 + 2)
25
"""
return _______

(a)

i. (2.0 pt) Fill in blank (a).

f(x) + k

f(x + k)

f(lambda x: x + k)

f(lambda x: x) + k

lambda x: f(x) + k

lambda x: f(x + k)

(lambda x: f(x))(x + k)

g(x) + k

g(x + k)

g(lambda x: x + k)

g(lambda x: x) + k

lambda x: g(x) + k

lambda x: g(x + k)

(lambda x: g(x))(x + k)

ii. (2.0 pt) Provide an alternate solution for blank (a) . This time, your solution must call compose
(defined below), and f may not be the operator of a call expression. In other words, you can’t write
f(in your answer. You may not write [or if.

def compose(f, g):
"""Return a function that takes x and calls f on g of x."""
return lambda x: f(g(x))

Exam generated for <EMAILADDRESS> 10

(b) (6.0 points)

Implement sum_range, which takes positive integers p and q with p <= q, as well as a one-argument
function term. It returns the sum of the return values of term called on each consecutive integer starting
with p and ending with q (including both p and q). You may call shift, summation, and compose. Assume
shift is implemented correctly.

def summation(n, term):
"""Sum the first n terms of a sequence: term(1) + term(2) + ... + term(n).

>>> summation(5, lambda x: x*x) # 1*1 + 2*2 + 3*3 + 4*4 + 5*5
55
"""
total, k = 0, 1
while k <= n:

total, k = total + term(k), k + 1
return total

def sum_range(p, q, term):
"""Sum terms p through q of a sequence: term(p) + term(p+1) + ... + term(q).

>>> sum_range(1, 5, lambda x: x*x) # 1*1 + 2*2 + 3*3 + 4*4 + 5*5
55
>>> sum_range(4, 5, lambda x: x*x) # 4*4 + 5*5
41
>>> sum_range(5, 5, lambda x: x*x) # 5*5
25
"""
assert p <= q
return _______ (_______ , _______)

(a) (b) (c)

i. (1.0 pt) Fill in blank (a).

summation

shift

compose

term

ii. (2.0 pt) Fill in blank (b).

p - q - 1

p - q

p - q + 1

q - p - 1

q - p

q - p + 1

Exam generated for <EMAILADDRESS> 11

iii. (3.0 pt) Fill in blank (c).

Exam generated for <EMAILADDRESS> 12

(c) (0.0 points)

This A+ question is not worth any points. It can only affect your course grade if you have
a high A and might receive an A+. Finish the rest of the exam first!

The shifter function below is a curried version of shift.

Implement unshift, which takes the result of shifter(k) for some number k. It returns a function that
takes the result of shifter(k)(f) for some function f and returns a function equivalent to f. That is:

f(x) == unshift(shifter(k))(shifter(k)(f))(x)

You can write your answer on multiple lines if it’s long. You can abbreviate lambda using the greek symbol
lambda.

Your answer must be a call to shift. You may also call any of compose, summation, or sum_range.

Hint: If you can compute k, then you can shift backward by k to undo the original shift.

def shifter(k):
def shifted(f):

return shift(k, f)
return shifted

def unshift(shifted):
"""Assume shifted is the return value of shifter(k) for some k.

>>> cubic = lambda x: x*x*x - 5*x*x + 1 # Some complicated function
>>> cubic(2.0)
-11.0
>>> cubic(9.0)
325.0
>>> do = shifter(4)
>>> do(cubic)(2.0) # same as cubic(6.0)
37.0
>>> do(cubic)(9.0) # same as cubic(13.0)
1353.0
>>> undo = unshift(do)
>>> undo(do(cubic))(2.0) # same as cubic(2.0)
-11.0
>>> undo(do(cubic))(9.0) # same as cubic(9.0)
325.0
"""
return lambda g: _______

i. (0.0 pt) Fill in the blank with a single call to shift.

Exam generated for <EMAILADDRESS> 13

No more questions.

