
CS 61A Structure and Interpretation of Computer Programs
Fall 2025 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (5.0 points) What Would Python Display?

Assume the following code has been executed.

square = lambda x: x * x

def times(a, b, c):
x = a
f = lambda y: x * y
x = b
g = (lambda q: lambda r: q * r)(x)
x = c
print(f(g(x)))

def delay(s):
last = None
for x in s:

if last:
print(x)
return last

last = x

w = [print, abs, square, print]

Write the output that would be displayed by evaluating each expression below. If an error occurs, write ERROR,
but also write any output that is displayed before the error occurs.

Example: For print(square(5)) you should answer 25.

(a) (2.0 pt) times(2, 3, 10)

(b) (3.0 pt) print(delay(map(lambda f: f(-2), w)))

Exam generated for <EMAILADDRESS> 4

2. (5.0 points) Do You Copy?

Draw an environment diagram to answer the following questions. Only the questions will be scored.

1: def copy(s):
2: return s[:1] + s[1:]
3: inner = [5, [6]]
4: first = copy(inner)
5: second = inner[1]
6: inner[0] = 7
7: inner.append(7)
8: inner[1].append(7)
9: inner[1] = 8

10: print(first)
11: print(second)

(a) (2.0 pt) What is displayed by print(first) on line 10?

[5, [6]]

[5, [6], 7]

[5, [6], 7, 7]

[5, [6, 7]]

[5, [6, 7], 7]

[7, [6], 7]

[7, [6, 7]]

[7, [6, 7], 7]

[7, 8]

[7, 8, 7]

[[6]]

[[6, 7]]

[[6], 7]

[[6, 7], 7]

[8]

[8, 7]

(b) (2.0 pt) What is displayed by print(second) on line 11?

8

[6]

[[6]]

[6, 7]

[[6, 7]]

[[6], 7]

[8]

[8, 7]

Exam generated for <EMAILADDRESS> 5

(c) (1.0 pt) What is the order of growth of the time it takes to evaluate [sum(s[:i]) for i in range(len(s))]
in terms of the length of s for a list of numbers s. The sum function takes linear time in the length of its
input. Slicing a list takes linear time in the length of the slice. Creating a range and calling len on a list
both take constant time (one step each).

logarithmic

linear

quadratic

exponential

Exam generated for <EMAILADDRESS> 6

3. (21.0 points) Math Placement Exam

Definition. An equation is a list of numbers and operators. A number is either an integer or a ?. An operator
is either +, -, or =. Equations start and end with a number, alternate between numbers and operators, and
contain exactly one =.

(a) (5.0 points)

Implement is_equation, which takes a list s. It returns whether s is an equation.

def is_equation(s):
"""Return whether the list s contains a well-formed equation.
>>> is_equation([7, '+', 2, '=', '?', '+', 6])
True
>>> is_equation([-7, '+', '?', '=', '?', '-', 6])
True
>>> is_equation([-7, '+', 2, '=', '?', '-']) # No number at the end
False
>>> is_equation(['-', 7, '+', 2, '=', '?', '-', 6]) # No number at the start
False
>>> is_equation([-7, '+', 2, '?', '+', 6, '=', 9]) # Two adjacent numbers (2 and ?)
False
>>> is_equation([-7, '+', 2, '+', '-', 6, '=', 9]) # Two adjacent operators (+ and -)
False
>>> is_equation([-7, '+', 2, '=', '?', '=', 6]) # More than one =
False
"""
number, equals = True, 0
for x in s:

ok = (number and (_______)) or (_______ ['+', '-', '='])
if not ok: (a) (b)

return False
if x == '=':

equals += 1
number = not number

return _______
(c)

i. (1.0 pt) Fill in blank (a).

isinstance(x, int) or x == ?

isinstance(x, int) and x == ?

isinstance(x, int) or x == '?'

isinstance(x, int) and x == '?'

ii. (2.0 pt) Fill in blank (b).

iii. (2.0 pt) Fill in blank (c).

Exam generated for <EMAILADDRESS> 7

(b) (5.0 points)

Definition. A list of integers answers satisfies an equation if there is one integer per placeholder ? in the
equation, and after replacing each ? with the corresponding integer from answers, the expression on the
left of = has an equal value to the expression on the right of =.

Implement tally to complete the implementation of evaluate. The evaluate function takes an equation
and a list of integers called answers that contains one value for each ? in the equation. It returns True if
answers satisfies the equation and False otherwise.

The count method of a list takes a value and returns the number of items in the list that are equal to the
value.

def evaluate(equation, answers):
"""Return whether the equation is true once each ? is filled by the corresponding answer.

>>> evaluate([7, '-', 2, '=', '?', '+', 4], [1]) # 7 - 2 == 1 + 4
True
>>> evaluate([7, '-', 2, '=', '?', '-', 4], [3]) # 7 - 2 != 3 - 4
False
>>> evaluate([7, '-', 2, '=', 1, '+', 4], []) # 7 - 2 == 1 + 4
True
>>> evaluate([7, '-', '?', '=', '?', '-', 4], [2, 9]) # 7 - 2 == 9 - 4
True
"""
assert is_equation(equation) and len(answers) == equation.count('?')
eq_iter, ans_iter = iter(equation), iter(answers)
return tally(eq_iter, ans_iter) == tally(eq_iter, ans_iter)

def tally(eq, ans):
"""A helper function for evaluate that computes the value of one side of an equation,

stopping either at an = sign or the end of the equation."""
number, total = True, 0
multiplier = 1 # should always be either 1 or -1
for x in eq:

if _______:
(d)

if x == '?':

(e)

total += multiplier * x
else:

if x == '=':

(f)

else:

multiplier = _______[x] # Hint: use a dictionary
(g)

number = not number

return total

Exam generated for <EMAILADDRESS> 8

i. (1.0 pt) Fill in blank (d).

number

not number

isinstance(x, int)

not isinstance(x, int)

ii. (1.0 pt) Fill in blank (e).

iii. (1.0 pt) Fill in blank (f).

return total

return sum(ans)

return sum(eq)

total += sum(ans)

total += sum(eq)

total += tally(eq, ans)

total -= tally(eq, ans)

iv. (2.0 pt) Fill in blank (g). Hint: Use a dictionary.

Exam generated for <EMAILADDRESS> 9

(c) (6.0 points)

Implement feasible, which takes an equation and a range of integers called allowed. It returns True if
it’s possible to satisfy the equation using numbers from allowed and False otherwise. In other words, it
returns whether it is possible to replace each ? in the equation with some number from allowed such that
the expressions to the left and right of = are indeed equal. The same number can replace more than one ?.
Assume evaluate is implemented correctly. You may call evaluate.

def feasible(eq, allowed=range(0, 10)):
"""Return whether it's possible to satisfy the equation eq using numbers from allowed.

>>> feasible([7, '+', 2, '=', '?', '+', 6]) # the ? could be 3
True
>>> feasible(['?', '+', 2, '=', '?', '+', 6]) # the first ? could be 7 and the second 3
True
>>> feasible([-7, '+', 2, '=', '?', '+', 6])
False
>>> feasible(['?', '+', 5, '=', '?', '-', 6])
False
>>> feasible(['?', '+', 5, '=', '?', '-', 6], range(-10, 10)) # -5 and 6, for example
True
"""

if '?' not in eq:

return _______
(h)

n = min([i for i in range(len(eq)) if _______]) # index of the first ?
(i)

return any([_______ for x in allowed])
(j)

i. (2.0 pt) Fill in blank (h).

ii. (1.0 pt) Fill in blank (i).

i == '?'

i != '?'

eq[i] == '?'

eq[i] != '?'

iii. (3.0 pt) Fill in blank (j). You may not write for or in or map or range.

Exam generated for <EMAILADDRESS> 10

(d) (5.0 points)

Implement solve, which takes an equation and a range of integers called allowed. It returns an iterator
over lists of integers, and each of these lists satisfies the equation. You may call evaluate and feasible.

def print_all(t):
for x in t:

print(x)

def solve(equation, allowed=range(0, 10)):
"""Return an iterator over all answer lists that satisfy an equation.

>>> print_all(solve([7, '+', 2, '=', '?', '+', 6]))
[3]
>>> print_all(solve(['?', '-', 2, '=', '?', '+', 6]))
[8, 0]
[9, 1]
>>> print_all(solve(['?', '=', '?', '+', '?'], range(1, 4)))
[2, 1, 1]
[3, 1, 2]
[3, 2, 1]
"""
def candidates(n):

"""Yield all possible answer lists with n values."""

if n == 0:

yield []

else:

for first in allowed:

for rest in _______:
(k)

yield _______
(l)

blanks = equation.count('?') # the number of ? in equation

return _______(_______ , candidates(blanks))
(m) (n)

i. (1.0 pt) Fill in blank (k).

allowed

equation

solve(equation[1:], allowed)

solve(equation[2:], allowed)

candidates(n-1)

candidates(n-first)

Exam generated for <EMAILADDRESS> 11

ii. (1.0 pt) Fill in blank (l).

first + rest

[first] + rest

first + [rest]

[first, rest]

[[first], rest]

[first, [rest]]

iii. (1.0 pt) Fill in blank (m).

map

filter

any

all

zip

iv. (2.0 pt) Fill in blank (n).

Exam generated for <EMAILADDRESS> 12

4. (10.0 points) Trim the Tree

(a) (5.0 points)

Implement sums, which takes a Tree of integers t. It returns a dictionary in which each node of t is a key
and the corresponding value is the sum of the labels of the tree rooted at that node.

The Tree class appears on the left side of Page 2 of the Midterm 2 study guide.

def sums(t):
"""Return a dictionary from nodes to their label sums.

>>> t = Tree(2, [Tree(4, [Tree(5)]), Tree(3), Tree(5, [Tree(6), Tree(7)])])
>>> d = sums(t)
>>> nodes = [t, t.branches[0], t.branches[0].branches[0], t.branches[2]]
>>> [d[n] for n in nodes]
[32, 9, 5, 18]
"""

result = {}

def insert(t):

for b in t.branches:

(a)

result[t] = _______
(b)

insert(t)

return result

i. (2.0 pt) Fill in blank (a).

insert(b)

sums(b)

result += sums(b)

result[b] = insert(b)

result[b] += insert(b)

result[t] += insert(b)

result[t] += result[b]

result[b] = sums(t)

result[b] += sums(t)

ii. (3.0 pt) Fill in blank (b).

Exam generated for <EMAILADDRESS> 13

(b) (5.0 points)

Implement one_cut, which takes a Tree of integers t and a number n. It returns a new tree that has the
same labels and structure as t but with one sub-tree excluded. In other words, the returned tree looks
like t with a non-root node and its descendents removed. Exclude the non-root node that makes the sum
of the remaining labels of the tree as close to n as possible (in absolute value). Do not mutate t. Assume t
has at least 2 nodes.

def one_cut(t, n):
"""Return a tree like t but omit a node so that the sum of remaining labels is close to n.

>>> t = Tree(2, [Tree(4, [Tree(5)]), Tree(3), Tree(5, [Tree(6), Tree(7)])]) # sums to 32
>>> one_cut(t, 30) # cuts just the 3 to get 29
Tree(2, [Tree(4, [Tree(5)]), Tree(5, [Tree(6), Tree(7)])])
>>> one_cut(t, 26) # cuts just the 6 to get 26
Tree(2, [Tree(4, [Tree(5)]), Tree(3), Tree(5, [Tree(7)])])
>>> one_cut(t, 15) # cuts the 5 node with 6 and 7 below it to get 14
Tree(2, [Tree(4, [Tree(5)]), Tree(3)])
>>> one_cut(t, 1) # 14 is the smallest possible sum after one cut
Tree(2, [Tree(4, [Tree(5)]), Tree(3)])
"""
d = sums(t)
total = d.pop(t) # remove the root node from the dictionary; total is the sum of its labels
target = min(d.keys(), key=lambda node: _______)

(c)
def cut(t):

(d)

(e)

i. (2.0 pt) Fill in blank (c).

ii. (2.0 pt) Fill in blank (d).

t.branches.remove(target)

t.branches = [b for b in t.branches if b is not target]

t.branches = [cut(b) for b in t.branches if b is not target]

t = Tree(t.label, [b for b in t.branches if b is not target])

t = Tree(t.label, [cut(b) for b in t.branches if b is not target])

return Tree(t.label, [b for b in t.branches if b is not target])

return Tree(t.label, [cut(b) for b in t.branches if b is not target])

Exam generated for <EMAILADDRESS> 14

iii. (1.0 pt) Fill in blank (e).

return t

return cut(t)

return Tree(t.label, list(map(cut, t.branches)))

return [cut(t), t][1]

Exam generated for <EMAILADDRESS> 15

5. (4.0 points) Downloads

The coroutine function download fetches a file with the given name. Its implementation is not shown.

async def download(filename: str):
...

class Downloader():
def __init__(self, filenames):

self.filenames = filenames
self.current_index = 0

async def download_files(self):
while self.current_index < len(self.filenames):

filename = self.filenames[self.current_index]
self.current_index += 1
await download(filename)

async def download_all(self):
await asyncio.gather(self.download_files(), self.download_files())

d = Downloader(["a", "b", "c", "d"])
asyncio.run(d.download_all())

(a) (3.0 pt) The code above initializes a Downloader with a list of 4 files ["a", "b", "c", "d"]. Which of
the following statements are true? Select all that apply.

2 The function download will be called exactly 4 times.

2 The function download may be called more than 4 times.

2 The function download may be called fewer than 4 times.

2 The function download will be called on each file exactly once.

2 The function download may not be called on all of the files.

2 The function download may be called more than once on the same file.

2 The code above may error because the index self.current_index is out of range.

(b) (1.0 pt) Assume that the function download takes one second to run, and spends all of that time waiting
for the file to be downloaded. During that wait time, it gives up control so that other coroutines can run.
How many seconds does the code above take to run?

Exam generated for <EMAILADDRESS> 16

6. (15.0 points) Scheme VS Python

(a) (5.0 points)

Implement match, which takes a linked list of numbers s (a Link instance or Link.empty) and a positive
integer k. It returns the number of pairs of equal elements that are k positions apart in s. Hint: You
may use multiple assignment in your solution: ___ , ___ = ___ , ___

The Link class appears on the left side of Page 2 of the Midterm 2 study guide.

def match(s, k):
"""Return how many pairs of values in linked list s that are k positions apart are equal.
>>> nums = Link(3, Link(1, Link(4, Link(1, Link(5, Link(2, Link(5, Link(3, Link(5)))))))))
>>> match(nums, 2) # 1 and 1; 5 and 5; 5 and 5
3
>>> {k: match(nums, k) for k in range(1, 8)} # k=4: 5 and 5; k=7: 3 and 3
{1: 0, 2: 3, 3: 0, 4: 1, 5: 0, 6: 0, 7: 1}
"""
t, count = s, 0
_______:

(a)
if t is not Link.empty:

(b)

while t is not Link.empty:
if _______:

(c)
count += 1

(d)

return count

i. (1.0 pt) Fill in blank (a).

def f(t)

if s is not Link.empty

while s is not Link.empty

for x in range(k)

ii. (1.0 pt) Fill in blank (b).

iii. (1.0 pt) Fill in blank (c).

iv. (2.0 pt) Fill in blank (d).

Exam generated for <EMAILADDRESS> 17

(b) (5.0 points)

Implement zip-map, a Scheme procedure that takes a two-argument procedure f and lists s and t. It
returns a list containing the results of calling f on pairs of values from s and t that appear in the same
position (index) within s and t. For example, the first value in the returned list is the return value of
calling f on the first value in s and the first value in t. The length of the returned list is the minimum of
the length of s and the length of t.

;;; Return a list of results from calling f on pairs of co-indexed values from s and t
;;;
;;; scm> (zip-map + '(10 30 20 40) '(5 6 7))
;;; (15 36 27)
;;; scm> (zip-map list '(10 30 20 40) '(9 8 7 6 5 4))
;;; ((10 9) (30 8) (20 7) (40 6))
(define (zip-map f s t)

(if (or (null? s) (null? t)) nil

(_______ _______ _______)))
(e) (f) (g)

i. (1.0 pt) Fill in blank (e).

cons

list

append

zip-map

ii. (2.0 pt) Fill in blank (f).

(car s)

(car t)

(cons (car s) (car t))

(list (car s) (car t))

(f (cons (car s) (car t)))

(f (list (car s) (car t)))

(f (car s) (car t))

(apply f (car s) (car t))

iii. (2.0 pt) Fill in blank (g).

Exam generated for <EMAILADDRESS> 18

(c) (5.0 points)

Implement match, a Scheme procedure that takes a list of numbers s and a positive integer k. It returns
the number of pairs of equal elements that are k positions apart in s. You may call advance and zip-map.

;;; Return the elements of list s starting at index k
(define (advance s k) (if (or (zero? k) (null? s)) s (advance (cdr s) (- k 1))))

;;; Return how many pairs of values in list s which are k positions apart are equal
;;; scm> (define nums '(3 1 4 1 5 2 5 3 5))
;;; nums
;;; scm> (match nums 2)
;;; 3
;;; scm> (map (lambda (k) (list k ': (match nums k))) '(1 2 3 4 5 6 7))
;;; ((1 : 0) (2 : 3) (3 : 0) (4 : 1) (5 : 0) (6 : 0) (7 : 1))
(define (match s k)

(_______ (_______ (lambda (a b) _______) s _______)))
(h) (i) (j) (k)

i. (1.0 pt) Fill in blank (h).

+

sum

len

cons '+

apply +

ii. (1.0 pt) Fill in blank (i).

advance

zip-map

map

filter

apply

iii. (2.0 pt) Fill in blank (j). Hint: Write an expression that evaluates to a number.

iv. (1.0 pt) Fill in blank (k).

s

k

(cdr s)

(advance s k)

Exam generated for <EMAILADDRESS> 19

7. (9.0 points) Students

A student has a name (a str) and a discussion group (a DiscGroup instance). Each student is placed into a
discussion group based on a keyword (a str) supplied by the student. When a Student instance is created,
that student is placed into an existing discussion group that has fewer than 6 students and that has the same
keyword that the student supplied. If the student cannot be placed into any existing group, the student will
be placed into a new discussion group. Each discussion group (a DiscGroup instance) has a unique integer id,
starting at 0 for the first discussion group created and counting up, as well as a list of Student instances called
students and a keyword (a str).

class Student():
"""A student has a name and a keyword that is used to place them in a discussion group.
>>> chris = Student("Chris", "kickstart")
>>> pranav = Student("Pranav", "tortilla")
>>> sebastian = Student("Sebastian", "tortilla")
>>> print(chris)
Student Chris is in Disc 0: kickstart (['Chris'])
>>> print(pranav)
Student Pranav is in Disc 1: tortilla (['Pranav', 'Sebastian'])
>>> print(sebastian)
Student Sebastian is in Disc 1: tortilla (['Pranav', 'Sebastian'])
"""
def __init__(self, name, keyword):

"""Initialize the student and place them in a discussion group."""
self.name = name
self.group = _______

(a)
for group in _______:

(b)
if group.keyword == keyword and len(group.students) < 6:

self.group = _______
(c)

if not self.group:
self.group = _______

(d)

(e)

def __str__(self):
return f"Student {self.name} is in {self.group}"

class DiscGroup():
groups = [] # All of the DiscGroup instances

def __init__(self, keyword):
self.students = [] # All of the students in this DiscGroup
self.keyword = keyword
self.id = _______

(f)

(g)

def __str__(self):
return f"Disc {self.id}: {self.keyword} ({[s.name for s in self.students]})"

Exam generated for <EMAILADDRESS> 20

(a) (1.0 pt) Fill in blank (a).

None

group

DiscGroup(keyword)

DiscGroup(self.keyword)

DiscGroup(self, keyword)

(b) (1.0 pt) Fill in blank (b).

(c) (1.0 pt) Fill in blank (c).

None

group

DiscGroup(keyword)

DiscGroup(self.keyword)

DiscGroup(self, keyword)

(d) (1.0 pt) Fill in blank (d).

None

group

DiscGroup(keyword)

DiscGroup(self.keyword)

DiscGroup(self, keyword)

(e) (2.0 pt) Fill in blank (e).

(f) (1.0 pt) Fill in blank (f).

(g) (2.0 pt) Fill in blank (g).

Exam generated for <EMAILADDRESS> 21

8. (6.0 points) Students in SQL

The students table has one row per student and columns for their name (string), the discussion_id (int)
of their discussion, and a keyword (string) chosen by the student. The keyword was used to place the student
in a discussion with other students who selected the same keyword.

The discussions table has one row per discussion and columns for the discussion’s unique id (int), the ta
(string) who leads the discussion, and the room (string) where the discussion is located.

The first few rows in each table are shown below. Not all rows are shown.

(a) (3.0 points)

Select the most frequently used keyword, and the total number of students with that keyword. Assume
there is one keyword used more than any other (no ties).

SELECT keyword, _______ AS total FROM students _______;
(a) (b)

i. (1.0 pt) Fill in blank (a).

1

name

COUNT(*)

MAX(keyword)

MAX(name)

MAX(COUNT(*))

ii. (2.0 pt) Fill in blank (b).

GROUP BY keyword;

GROUP BY keyword HAVING MAX(COUNT(*));

GROUP BY keyword HAVING COUNT(*) = MAX(COUNT(*));

GROUP BY keyword LIMIT MAX(COUNT(*));

GROUP BY keyword ORDER BY keyword DESC LIMIT 1;

GROUP BY keyword ORDER BY COUNT(*) DESC LIMIT 1;

AS s1 JOIN students AS s2 ON s1.keyword = s2.keyword LIMIT 1;

ORDER BY COUNT(*) DESC;

ORDER BY keyword DESC;

ORDER BY keyword DESC LIMIT MAX(COUNT(*));

ORDER BY keyword DESC LIMIT 1;

Exam generated for <EMAILADDRESS> 22

(b) (3.0 points)

Create a new table big with one row for each discussion that has more than 20 students. The columns
give the ta name and discussion id for each of these discussions.

An example big result is shown on the previous page. The first row indicates that the discussion with ID
1 taught by Rhys has more than 20 students in it (even though only 1 of these students is shown in the
example rows of the students table).

CREATE TABLE big AS
SELECT ta, id FROM students JOIN discussions _______;

(c)

i. (3.0 pt) Fill in blank (c).

ii. (0.0 pt) Optional: Draw a picture of you experience as a student in CS 61A.

See the other side of this page for the A+ questions.

Exam generated for <EMAILADDRESS> 23

9. (0.0 points) Final Boss

These two A+ questions are not worth any points. They can only affect your course grade if you
have a high A and might receive an A+. Finish the rest of the exam first! If your answers are long, write
on multiple lines.

(a) (0.0 pt) Definition. An infix expression is a list that begins and ends with an integer and alternates
between integers and operators, where each operator is either + or -. For example, (7 + 2 - 1 + 3 - 6
+ 8 - 1 + 4).

Fill in the blank to implement preorder, which takes an infix expression expr and returns a call to + on
all of the integers from expr. Each subtracted number in expr should appear within a one-argument call
to -.

;;; Convert an infix expression to a valid Scheme expression with the same value.
;;; scm> (preorder '(7 + 2 - 1 + 3 - 6 + 8 - 1 + 4))
;;; (+ 7 2 (- 1) 3 (- 6) 8 (- 1) 4)
;;; scm> (preorder '(-7 - -1 - 2 - -3))
;;; (+ -7 (- -1) (- 2) (- -3))
(define (preorder expr)

(define (rest expr f)
(define (helper s)

(cond ((null? s) nil)
((eq? (car s) '+) (helper (cdr s)))
((eq? (car s) '-) (f helper s))
(else (cons (car s) (helper (cdr s))))))

(helper expr))
_______)

Exam generated for <EMAILADDRESS> 24

(b) (0.0 pt) Implement two_cut, which takes a Tree of positive integers t with at least 3 nodes and an
integer n. It returns a new tree like t but with 2 non-root nodes (and their descendents) removed. It’s ok
if one of the removed nodes is a descendent of the other. Remove the two non-root nodes that change the
label sum of the tree to be as close to n as possible (in absolute value). Do not mutate t. You may call
one_cut from 4(b) but not sums.

def g(t):
return t.label + sum([g(b) for b in t.branches])

def two_cut(t, n):
"""Return a tree like t but omit 2 nodes so that the sum of remaining labels is close to n.
>>> t = Tree(2, [Tree(4, [Tree(5)]), Tree(3, [Tree(1)]), Tree(5, [Tree(6), Tree(7)])])
>>> two_cut(t, 30) # cut 1 and then 3; result sums to 29
Tree(2, [Tree(4, [Tree(5)]), Tree(5, [Tree(6), Tree(7)])])
>>> two_cut(t, 12) # cut 3 and then 5; result sums to 11
Tree(2, [Tree(4, [Tree(5)])])
>>> two_cut(t, 6) # cut 4 and then 5; result sums to 6
Tree(2, [Tree(3, [Tree(1)])])
"""
return _______

Exam generated for <EMAILADDRESS> 25

No more questions.

