
CS 61A Structure and Interpretation of Computer Programs
Spring 2017 Test 2 (revised) Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is open book, open notes, closed computer, closed calculator.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

Room in which you are taking exam

Seat number in the exam room

I pledge my honor that during this

examination I have neither given

nor received assistance.

(please sign)

2

Reference Material.

Linked Lists

class Link:

"""A linked list cell.

>>> L = Link(0, Link(1))

>>> L.first

` 0

>>> L.rest

Link(1)

>>> L.first = 2

>>> L

Link(2, Link(1))

>>> L.rest = Link.empty

>>> L

Link(2)

"""

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __repr__(self):

if self.rest is Link.empty:

return "Link({})".format(self.first)

else:

return "Link({}, {})".format(self.first, self.rest)

Trees

class Tree:

"""A tree node."""

def __init__(self, label, branches=[]):

for c in branches:

assert isinstance(c, Tree)

self.label = label

self.branches = branches

def is_leaf(self):

return not self.branches

Name: 3

1. (12 points) Pointers

In the following problems, single boxes are variables that contain pointers, and double boxes are Links (see
the definition of Link on page ??). To show that a box contains a pointer to the empty list, draw the box like
this:

In parts (a) and (b), add arrows and values to the object skeletons on the right to show the final state of the
program. Not all boxes will be used. (For examples of what kinds of box and pointer diagrams we’re looking
for, you might look at parts (c) and (d) first.)

(a) (3 pt)

listy = Link(0, Link(1))

def nest(L):

if L is Link.empty:

return L

N = nest(L.rest)

L.first = Link(L.first, N)

return L.first

linky = nest(listy)

listy:

linky: 0 1

(b) (3 pt)

v = Link(0, Link(1, Link(2)))

e = v.rest.rest

e.rest = v.rest

v.rest.rest = v

v.rest = Link.empty

v:

e:

0 1 2

4

(c) (3 pt) Show Python code that will produce the situation shown in the diagram. (An arrow pointing to a Link

may be shown as pointing anywhere on the double box for that Link.)

v:

0 1

v = Link(None, Link(0, Link(1)))

v.first = v.rest

v.rest.rest.rest = v

(d) (3 pt) Show Python code that converts the situation shown above the line into that shown below the line.
Assume n is even.

v: 1 2 3 4 . . . n-1 n

v: 1 2 3 4 . . . n-1 n

w: . . .

def split2(L):

"""Assuming that linked list L has even length, breaks L into

two-element linked lists, and returns a linked list of those lists."""

if L is Link.empty:

return Link.empty

else:

result = Link(L, split2(L.rest.rest))

L.rest.rest = Link.empty

return result

w = split2(v)

Name: 5

2. (6 points) Complexity

(a) (1.5 pt) Indicate which of the following assertions are true by circling the letters for those statements. An
assertion such as Θ(f(n)) ⊆ Θ(g(n)) means “any function that is in Θ(f(n)) is also in Θ(g(n)),” and Θ(f(n)) =
Θ(g(n)) if and only if Θ(f(n)) ⊆ Θ(g(n)) and Θ(g(n)) ⊆ Θ(f(n)).

A. If f(n) ∈ Θ(1) and g(n) ∈ Θ(1), then Θ(|f(n)|+ |g(n)|) ∈ Θ(1).

B. If Θ(f(n)) = Θ(g(n)), and g(n) > 0 everywhere, then f(n)/g(n) ∈ Θ(1).

C. Θ(x2) ⊆ Θ(x3).

D. Θ(2x) ⊆ Θ(2x + x2).

E. If f(n) ∈ Θ(1000 · x3), then f(20) > 800.

(b) (1.5 pt) Consider the function

def num_kinks(L):

c = 0

i = 0

while i < len(L):

j = i

while j < len(L):

while j < len(L):

if kink(L[i], L[j]):

c += 1

break

j += 1

j += 1

i += 1

return c

Circle the order of growth that best describes the worst-case execution time (measured by the number of calls
to kink) of a call to num_kinks as a function of N , the length of L.

A. Θ(logN)

B. Θ(N)

C. Θ(N2)

D. Θ(N3)

E. Θ(2N)

6

(c) (1.5 pt) Consider the following function on Trees

def count_subtrees(T, p):

if p(T.label):

return 1

else:

return sum([count_subtrees(child, p) for child in T.branches])

Assuming that the maximum number of children of any node is 3, circle the order of growth that best describes
the worst-case execution time (measured by the number of calls to p) of a call to count_subtrees as a function
of N , the number of nodes in T.

A. Θ(logN)

B. Θ(N)

C. Θ(N2)

D. Θ(N3)

E. Θ(3N)

(d) (1.5 pt) For the same function as in part (c) above, and again assuming that the maximum number of children
of any node is 3, circle the order of growth that best describes the worst-case execution time (measured by the
number of calls to p) of a call to count_subtrees as a function of H , the height of T.

A. Θ(logH)

B. Θ(H)

C. Θ(H2)

D. Θ(H3)

E. Θ(3H).

3. (1 points) From the Sum of Human Knowledge

This Renaissance composer, famous for his harmonically innovative madrigals, was also infamous for murdering
his wife and her lover and thereafter having himself beaten regularly by one of his servants. Who was he?

Carlo Gesualdo

Name: 7

4. (8 points) OOPs!

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “ERROR”. No
answer requires more than 3 lines. (It’s possible that all of them require even fewer.)

class Thing:

id = 0

def fidget(self, n):

print(n, "A", self.id)

def fuss(self, x, n):

print(n, "B")

self.fidget(n)

x.fidget(n)

def twitch(self, n):

self.waffle(n)

class Gadget(Thing):

id = 1

class Whatsit(Gadget):

def fidget(self, n):

print(n, "D", self.id)

def waffle(self, n):

print(n, "D")

def fiddle(self, x, n):

x.waffle(n)

t1 = Thing()

t2 = Gadget()

t3 = Whatsit()

t4 = Whatsit()

t3.id = 2

Expression Interactive Output
t3.fidget(1) 1 D 2

t4.fidget(2) 2 D 1

t4.fuss(t1, 3)
3 B

3 D 1

3 A 0

t4.fiddle(t4, 4) 4 D

t4.fiddle(t1, 5) ERROR

Thing.id = 3

t1.fidget(6)
6 A 3

8

5. (8 points) Inflections

Fill in the definition of class Wrinkles to conform to its doc comment. You need not use all the lines shown.

class Wrinkles:

"""An object that contains a sequence of items and a predicate (true/false

function) and that, when iterated over, produces adjacent pairs of items

in the sequence that satisfy the predicate.

>>> w = Wrinkles([1, 2, 3, 2, 4, 8, 5, 4], lambda x, y: x > y)

>>> for p in w:

... print(p)

(3, 2)

(8, 5)

(5, 4)

"""

def __init__(self, L, wrinkle):

self._L = L

self._wrinkle = wrinkle

def __iter__(self):

for k in range(1, len(self._L)):

if self._wrinkle(self._L[k - 1], self._[k]):

yield (self._L[k - 1], self._[k])

Name: 9

6. (8 points) Tree Paths

Given a tree, t, find the length of the longest downward sequence of node labels in the tree that are increasing
consecutive integers. For example, in this tree, the longest such sequence has three labels (1, 2, 3):

1

2 1

2

3

0

As illustrated, the longest sequence can start and end anywhere in the tree, not just the root. (Hint: don’t
forget there’s a max function.) [The original skeleton was flawed. [The “solution” below shows what we were
expecting, but does not properly take care of all cases where the longest path does not start at the root of the
tree. The next page shows a complete solution, based on a different solution.]

def longest_seq(t):

"""The length of the longest downward sequence of nodes in T whose

labels are consecutive integers.

>>> t = Tree(1, [Tree(2), Tree(1, [Tree(2, [Tree(3, [Tree(0)])])])])

>>> longest_seq(t) # 1 -> 2 -> 3

3

>>> t = Tree(1)

>>> longest_seq(t)

1

"""

if t.is_leaf():

return 1

max_len = 1

for b in t.branches:

if b.label == t.label + 1:

max_len = max(max_len, 1 + longest_seq(b))

else:

max_len = max(max_len, longest_seq(b))

return max_len

10

Here is a proper solution, based on the corrected skeleton

def longest_seq(tr):

"""The length of the longest downward sequence of nodes in TR whose

labels are consecutive integers.

>>> t = Tree(1, [Tree(2), Tree(1, [Tree(2, [Tree(3, [Tree(0)])])])])

>>> longest_seq(t) # 1 -> 2 -> 3

3

>>> t = Tree(1)

>>> longest_seq(t)

1

"""

max_len = 1

def longest(t):

"""Returns longest downward sequence of nodes starting at T whose

labels are consecutive integers. Updates max_len to that length,

if greater."""

nonlocal max_len

n = 1

if not t.is_leaf():

for b in t.branches:

L = longest(b)

if b.label == t.label + 1:

n = max(n, L + 1)

max_len = max(n, max_len)

return n

longest(tr)

return max_len

Name: 11

This page deliberately blank.

12

7. (8 points) Grafting

We want to insert (“graft”) branches from a sequence of trees onto a tree in places where a non-leaf node has
fewer than K branches, where K is a parameter. For example, given the list of four trees G created by

G = [Tree(2, [Tree(0), Tree(1)]), Tree(3), Tree(4), Tree(5)]

and the tree T1 shown below, we want T2 = graft(T1, G, 3) to destructively (and without creating any new
tree nodes) turn T1 into the tree T2:

0 1

2 3 4 5

G:

D E F G H

J

B C

AT1:

D E 2 F G H

J 3 40 1

B C 5

AT2:

The list of trees (G in the example above) will always have enough items to fill all necessary places. Trees are
inserted in postorder (that is, bottom to top, left to right).

Name: 13

Fill in the graft function here. You need not use all the lines.

def graft(T, L, k):

"""Returns the Tree created by destructively adding trees from L to

non-leaf nodes of Tree T with fewer than K branches. Assume that L has enough

items to fill all necessary places. Fill in trees in postorder (bottom to

top, left to right)."""

grafts = iter(L)

def do_grafts(tr):

if not tr.is_leaf():

for b in tr.branches:

do_grafts(b)

while len(tr.branches) < k:

tr.branches.append(next(grafts))

do_grafts(T)

return T

